2- Evaluate the chromatic and physicochemical properties of new polyphenolic compounds (native, structurally modified and/or encapsulated in different matrices) and to determine the respective kinetic and thermodynamic parameters aiming for putative technological applications in the food and pharmaceutical industries;

3- Study: a) the  nutritional  and  sensory impact resulting from  the  interaction  between  polyphenols, proteins  and carbohydrates; establishment of a mechanism of interaction between tannins and salivary proteins in a food model by using proteins isolated from human saliva; b) the influence of the presence of carbohydrates in these food tannin-protein interactions; c) the interaction of some food polyphenols digestive enzymes (pepsin, trypsin, and pancreatic elastase); d) the influence of food phenolics on the gliadin digestion and their interaction with the resulting peptides related to coeliac disease.

4- Formulate O/W emulsions and nanoemulsions containing antioxidants through a combination of high speed and high pressure homogenization processes to improve antioxidant dispersion into food matrices. Evaluate the physicochemical stability of these food-grade emulsions by measuring the physical properties of these emulsion systems (physical stability) and by determining their oxidative stability (chemical stability). The distribution of different sets of phenolic antioxidants (phenolipids) in food-grade emulsions is studied and their distribution correlated with their efficiency in inhibiting the oxidation. This contributes to establish a scientific basis to select the best antioxidant for a particular food application.

6- Study  the   biological   properties   of   polyphenols  of different food matrices (red fruits, olive oil, red wine, etc.) and  their  metabolites  through  testing  their  cytotoxicity towards  various  tumor  cell   lines,  and   the  antioxidant properties     of     dietary     polyphenols      through     the determination  of  some  antioxidant  features (antiradical power, reducing power, ability to retard lipid peroxidation) aiming to establish structure-activity relationships

The research group of Applied Organic Chemistry (QUINOA) from the Green Chemistry Laboratory (LAQV) has been developing an independent area of research focused on POLYPHENOL properties in foods, and namely: a) characterization of the polyphenol composition of some foods and beverages (grapes, olives, red wine, red fruits, fruit juice, etc.); b) establish a relationship between the polyphenol composition and the organoleptic properties of these foods; c) understand the mechanisms involved in the color and flavor of these foods and their changes during storage and ageing; d) innovate in the technological process in order to improve wine and fruit juice quality in collaboration with the industry; e) study the health-promoting effects of polyphenols and the biological mechanisms involved.

In order to accomplish these broad thematic objectives the group’s aims are:


1- Obtain (by isolation, synthesis or in some cases purchase commercially) and characterize: a) several structurally different polyphenols present in food matrices (red fruits, red wine and olive oil) by using modern analytical techniques, developing new synthesis approaches (both organic synthesis and enzymatic synthesis) and using cutting edge structural characterization apparatus; b) novel antioxidants (phenolipids); c) phenolic metabolites.

5- Study the bioavailability of food phenolics, namely the determination of the ability of different classes of food polyphenols in crossing the gastric, intestinal and blood-brain barriers using cellular models.

7- To recycle anthocyanins from industrial wastes, to use them as genuine forms (red coloured) or to chemically transform them into stable anthocyanin derivatives with other appealing colours (orange, blue). Taking advantage of both their colour features and bioactivity, they will be incorporated into formulations for the cosmetic industry targeted towards skin care prevention products.